Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization

نویسندگان

  • Xin-She Yang
  • Suash Deb
چکیده

Most global optimization problems are nonlinear and thus difficult to solve, and they become even more challenging when uncertainties are present in objective functions and constraints. This paper provides a new two-stage hybrid search method, called Eagle Strategy, for stochastic optimization. This strategy intends to combine the random search using Lévy walk with the firefly algorithm in an iterative manner. Numerical studies and results suggest that the proposed Eagle Strategy is very efficient for stochastic optimization. Finally practical implications and potential topics for further research will be discussed. Citation detail: X.-S. Yang and S. Deb, Eagle strategy using Levy walk and firefly algorithms for stochastic optimization, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010) (Eds. J. R. Gonzalez et al., Studies in Computational Intelligence, Springer Berlin, 284, 101-111 (2010).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Firefly Algorithm, Lévy Flights and Global Optimization

Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Lévy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is superior to existing...

متن کامل

Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal and Multimodal Optimization

Today, in computer science, a computational challenge exists in finding a globally optimized solution from an enormously large search space. Various meta-heuristic methods can be used for finding the solution in a large search space. These methods can be explained as iterative search processes that efficiently perform the exploration and exploitation in the solution space. In this context, thre...

متن کامل

Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength ...

متن کامل

A Chaotic Lévy flight Approach in Bat and Firefly Algorithm for Gray level image Enhancement

Recently nature inspired metaheuristic algorithms have been applied in image enhancement field to enhance the low contrast images in a control manner. Bat algorithm (BA) and Firefly algorithm (FA) is one of the most powerful metaheuristic algorithms. In this paper these two algorithms have been implemented with the help of chaotic sequence and lévy flight. One of them is FA via lévy flight wher...

متن کامل

OPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE FIREFLY AND BAT ALGORITHMS

The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010